Which of the following is the

 inverse relation to the set of ordered pairs below?$$
\{(-10,5),(-7,9),(0,6),(8,-12)\}
$$

a) $\{(10,-5),(7,-9),(0,-6),(-8,12)\} \quad$ go to station 6
b) $\{(5,-10),(9,-7),(6,0),(-12,8)\} \quad$ go to station 3
c) $\{(-5,10),(-9,7),(-6,0),(12,-8)\} \quad$ go to station 9
d) $\{(-10,-5),(-7,-9),(0,-6),(8,12)\} \quad$ go to station 10

Find the inverse of the function.
 $$
f(x)=\frac{2}{x+7}
$$

a) $f^{-1}(x)=\frac{x}{7+2 x}$
go to station 1
b) $f^{-1}(x)=\frac{-7 x+2}{x}$
go to station 9
c) Not a one-to-one function
go to station 8
d) $f^{-1}(x)=\frac{7+2 x}{x}$
go to station 4

Which is the graph of $y=-4 x^{2}-2$ and its inverse?

Find the inverse of $y=(8-2 x)^{2}$. Determine if the inverse is a function.

a) $y=\frac{8 \pm \sqrt{x}}{2}$ The inverse is not a function. go to station 8
b) $y= \pm \sqrt{\frac{8+x}{2}}$ The inverse is not a function. go to station 7
c) $y= \pm \sqrt{\frac{8+x}{2}}$ The inverse is a function. go to station 9
d) $y=\frac{8 \pm \sqrt{x}}{2}$ The inverse is a function. go to station 2

Determine whether the pair of

 functions are inverses.$$
\begin{aligned}
& f(x)=8 x-10 \\
& g(x)=\frac{1}{8} x+\frac{5}{4}
\end{aligned}
$$

a) No, the functions are not inverses.
b) Yes, the functions are inverses.
go to station 7
go to station 4

Find the inverse of the function.

$$
f(x)=\frac{x+4}{2 x-5}
$$

a) $\quad f^{-1}(x)=\frac{5 x+4}{2 x-1}$
go to station 11
b) $\quad f^{-1}(x)=\frac{2 x-1}{5 x+4}$
go to station 2
c) $\quad f^{-1}(x)=\frac{-x-4}{-2 x+5}$
go to station 4
d) $\quad f^{-1}(x)=\frac{5 x-4}{-2 x-5}$
go to station 7

Which statement about graphs and their inverses is true?

a) They are symmetric about the x-axis.
go to station 11
b) They are symmetric about the origin.
go to station 7
c) They are symmetric about the line $y=x$.
go to station 1
d) They are symmetric about the y-axis. go to station 3

If f and g are inverses of each

 other and the domain of $(f \circ g)(x)$ is the set of all real numbers, find $f\left(f^{-1}(\pi)\right)$.a) $\frac{1}{\pi}$
go to station 2
b) 0
go to station 4
c) π
go to station 7
d) Unable to tell
go to station 8

If $f(x)=-2 x+8$, then $f^{-1}(1)=$

a) $\frac{2}{9} \quad$ go to station 11
b) $\frac{9}{2} \quad$ go to station 4
c) 0
go to station 8
d) $\frac{7}{2}$
go to station 2

$$
\begin{aligned}
& \text { If } f(x)=x^{3}-1, \text { then } \\
& f^{-1}(26)=
\end{aligned}
$$

a) $1 \quad$ go to station 7
b) $2 \quad$ go to station 9
c) 3
go to station 5
d) 4
go to station 4
e) $0 \quad$ go to station 2

