## Lesson 4: Rotations

An image can be rotated about a

point.

• The blades of a fan rotate about a fixed point.

#### Vocabulary:

- a point around which a figure is rotated
- which way a figure is rotated.
- This is a triangle at a 0° or 360° rotation. We use this as our starting point.



Be sure to watch the change in the signs of the ordered pairs as we move through the other quadrants

2. Notice that with a **90°** rotation (quarter rotation) the image triangle moved to quadrant 2 or quadrant 4. A figure can rotate clockwise or counterclockwise.



#### **Original Coordinates:**

| A (3 <i>,</i> 6)               |   |   | В (     | 3, 2 | 2) | C (6, 2) |                  |   |  |  |
|--------------------------------|---|---|---------|------|----|----------|------------------|---|--|--|
| 90° Clockwise Rotation:        |   |   |         |      |    |          |                  |   |  |  |
| $A^{I}$ (                      | , | ) | $B^{I}$ | (    | ,  | )        | С <sup>I</sup> ( | , |  |  |
| 90° Counterclockwise Rotation: |   |   |         |      |    |          |                  |   |  |  |
| $A^{I}$ (                      | , | ) | $B^{I}$ | (    | ,  | )        | $C^{I}$ (        | , |  |  |

)

The signs of the y-coordinates did not change but the x-coordinates did. Also, the x & y coordinates switched spots. (Every 90° flip the coordinate and check the sign that should be in the quadrant you are in)

Notice that with a **180°** rotation (half rotation) the figure moved the quadrant 3. (or 90° and then 90° again)



| Origir         | Original Coordinates: |   |           |    |   |                                |   |   |
|----------------|-----------------------|---|-----------|----|---|--------------------------------|---|---|
| A (3, 6)       |                       |   | В (З,     | 2) |   | C (6, 2)                       |   |   |
| 180° Rotation: |                       |   |           |    |   |                                |   |   |
| $A^{I}$ (      | ,                     | ) | $B^{I}$ ( | ,  | ) | <i>C</i> <sup><i>I</i></sup> ( | , | ) |

The only difference between the original triangle and the image triangle is the sign change on all of the coordinates. The numbers, however, didn't flip-flop but rather stay in their original position.

The original triangle has now rotated
 270° (¾ rotation) from its original position. (or 90° counter clockwise)



### **Original Coordinates:**

| A (3, 6)                                 |   |   | В (З,     | 2) |   | C (6, 2)                       |   |   |  |  |
|------------------------------------------|---|---|-----------|----|---|--------------------------------|---|---|--|--|
| 90° Clockwise Rotation:                  |   |   |           |    |   |                                |   |   |  |  |
| $A^{I}$ (                                | , | ) | $B^{I}$ ( | ,  | ) | $C^{I}$ (                      | , | ) |  |  |
| 90° Counterclockwise Rotation:           |   |   |           |    |   |                                |   |   |  |  |
| $A^{I}$ (                                | , | ) | $B^{I}$ ( | ,  | ) | <i>C</i> <sup><i>I</i></sup> ( | , | ) |  |  |
| The signs on the v coordinates ONLY have |   |   |           |    |   |                                |   |   |  |  |

changed and the x and y coordinates have flip-flopped.

- a. When a figure is rotated 90° counterclockwise about the origin, multiply the y-coordinate by -1 and switch the x- and y- coordinates.
   (x, y)→ \_\_\_\_\_
  - b. When a figure is rotated 180° about the origin, multiply both coordinates by -1.
    (x, y)→ \_\_\_\_\_
- c. When a figure is rotated 270° counterclockwise (90° clockwise) about the origin, multiply the x-coordinate by -1, then switch the x- & y- coordinates.

(x, y)→\_\_\_\_\_

5. Draw the image of *ABCD* under a 180° clockwise rotation about the



Rotate the following image 90° clockwise about the origin



7. Rotate the image 270° clockwise around



Find the coordinates of the vertices of each figure given the rotation:

- 8. Rotation 90° clockwise about the origin Z(-1, -5), K(-1, 0), C(1, 1), N(3, -2)
- 9. Rotation  $180^{\circ}$  about the origin S(1, -4), W(1, 0), J(3, -4)





- 12. Hexagon DGJTSR is shown below.Identify the new coordinates of point T after each of the following rotations:
  - a. 0° or 360° = \_\_\_\_\_
  - b. 90° clockwise = \_\_\_\_\_
  - c. 90° counterclockwise = \_\_\_\_\_
  - d. 180° = \_\_\_\_\_
  - e. 270° clockwise = \_\_\_\_\_





## **LESSON 4-PRACTICE**

# Graph the following figure with the information provided.

1. Rotate 180° clockwise



2. Rotate  $90^\circ$  clockwise about the origin



3. Rotate 270° clockwise about the origin





5. Rotate 90° counterclockwise



Write the rule for the following transformation



9. Hexagon DGJTSR is shown below.Identify the new coordinates of point R after each of the following rotations:



 Quadrilateral KSJW is shown below.
 Identify the new coordinates of point S after each of the following rotations:



13. Triangle CLT is shown below. Identify the new coordinates of point T after each of the following rotations:

