Lesson 4: Rotations

- An image can be rotated about a
point.
O The blades of a fan rotate about a fixed point.

Vocabulary:

-

a point around which a figure is rotated
-
which way a figure is rotated.

1. This is a triangle at a 0° or 360° rotation. We use this as our starting point.

Be sure to watch the change in the signs of the ordered pairs as we move through the other quadrants
2. Notice that with a 90° rotation (quarter rotation) the image triangle moved to quadrant 2 or quadrant 4. A figure can rotate clockwise or counterclockwise.

Original Coordinates:

A (3,6)	B (3, 2)	$C(6,2)$
90° Clockwise Rotation:		
A^{I} (,)	B^{I} (,)	$C^{I}($,
90° Counterclockwise Rotation:		
A^{I} (,)	$B^{I}($,)	$C^{I}($,

The signs of the y-coordinates did not change but the x-coordinates did. Also, the $x \& y$ coordinates switched spots. (Every 90° flip the coordinate and check the sign that should be in the quadrant you are in)
3. Notice that with a $\mathbf{1 8 0}^{\circ}$ rotation (half rotation) the figure moved the quadrant 3. (or 90° and then 90° again)

Original Coordinates:

$\mathrm{A}(3,6)$	$\mathrm{B}(3,2)$	$\mathrm{C}(6,2)$
180° Rotation:		
$A^{I}\left(, \quad B^{I}()\right.$, $C^{I}(, \quad)$		

The only difference between the original triangle and the image triangle is the sign change on all of the coordinates. The numbers, however, didn't flip-flop but rather stay in their original position.
4. The original triangle has now rotated $270^{\circ}(3 / 4$ rotation) from its original position. (or 90° counter clockwise)

Original Coordinates:

A $(3,6)$	B $(3,2)$	C (6, 2)
90 ${ }^{\circ}$ Clockwise Rotation:		
A^{I} (B^{I} ($C^{I}($,
90° Counterclockwise Rotation:		
A^{I} (B^{I} ($C^{I}(, ~)$

The signs on the y coordinates ONLY have changed and the x and y coordinates have flip-flopped.
a. When a figure is rotated 90° counterclockwise about the origin, multiply the y-coordinate by -1 and switch the x - and y-coordinates.
$(x, y) \rightarrow$ \qquad
b. When a figure is rotated 180° about the origin, multiply both coordinates by -1 .
(x, y) \rightarrow \qquad
c. When a figure is rotated 270° counterclockwise (90° clockwise) about the origin, multiply the x-coordinate by -1 , then switch the $x-\& y$-coordinates.
$(x, y) \rightarrow$ \qquad
5. Draw the image of $A B C D$ under a 180° clockwise rotation about the origin.

6. Rotate the following image 90° clockwise about the origin

7. Rotate the image 270° clockwise around the origin

Find the coordinates of the vertices of each figure given the rotation:
8. Rotation 90° clockwise about the origin $Z(-1,-5), K(-1,0), C(1,1), N(3,-2)$
9. Rotation 180° about the origin

$$
S(1,-4), W(1,0), J(3,-4)
$$

Write a rule to describe each rotation:
10.

11. \qquad

12. Hexagon DGJTSR is shown below. Identify the new coordinates of point T after each of the following rotations:
a. 0° or $360^{\circ}=$ \qquad
b. 90° clockwise $=$ \qquad
c. 90° counterclockwise $=$ \qquad
d. $180^{\circ}=$ \qquad
e. 270° clockwise $=$ \qquad
f. 270° counterclockwise $=$

LESSON 4-PRACTICE

Graph the following figure with the

 information provided.1. Rotate 180° clockwise

2. Rotate 90° clockwise about the origin

3. Rotate 270° clockwise about the origin

4. Rotate 180° counterclockwise

5. Rotate 90° counterclockwise

Write the rule for the following transformation

6.

7. \qquad
8.

9. Hexagon DGJTSR is shown below. Identify the new coordinates of point R after each of the following rotations:

a. 0° or $360^{\circ}=$
b. 90° clockwise $=$ \qquad
c. 90° counterclockwise $=$ \qquad
d. $180^{\circ}=$ \qquad
e. 270° clockwise $=$ \qquad
f. 270° counterclockwise $=$ \qquad
10. Rotation 180° about the origin $Z(1,-3), K(8,1), C(0,-6), N(10,-4)$
11. Rotation 270° counterclockwise

$$
S(3,-7), W(-6,-1), J(4,8)
$$

\qquad

